Relativistic dissipative spin hydrodynamics from kinetic theory with a nonlocal collision term

نویسندگان

چکیده

We derive relativistic dissipative spin hydrodynamics from kinetic theory featuring a nonlocal collision term using the method of moments. In this framework, components tensor are dynamical variables which obey relaxation-type equations. find that corresponding relaxation times determined by local part term, while contributes to Navier-Stokes terms in these equations motion. The timescales comparable those usual currents. Finally, limit Pauli-Lubanski vector receives contributions proportional shear fluid, implies polarization hadrons observed heavy-ion collisions is influenced effects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Causal Theory of Relativistic Dissipative Hydrodynamics

We present a new formalism for the theory of relativistic dissipative hydrodynamics, where covariance and causality are satisfied by introducing the memory effect in irreversible currents. Our theory has a much simpler structure and thus has several advantages for practical purposes compared to the Israel-Stewart theory (IS). We apply our formalism to the Bjorken model and the results are shown...

متن کامل

Relativistic superfluid hydrodynamics from field theory

It is well known that the hydrodynamics of a zero-temperature superfluid can be formulated in field-theoretic terms, relating for example the superfluid four-velocity to the gradient of the phase of a Bose-condensed scalar field. At nonzero temperatures, where the phenomenology of a superfluid is usually described within a two-fluid picture, this relationship is less obvious. For the case of a ...

متن کامل

Building a Hydrodynamics Code with Kinetic Theory

We report on the development of a test-particle based kinetic Monte Carlo code for large systems and its application to simulate matter in the continuum regime. Our code combines advantages of the Direct Simulation Monte Carlo and the Point-of-Closest-Approach methods to solve the collision integral of the Boltzmann equation. With that, we achieve a high spatial accuracy in simulations while ma...

متن کامل

Dissipative relativistic fluid dynamics: a new way to derive the equations of motion from kinetic theory.

We rederive the equations of motion of dissipative relativistic fluid dynamics from kinetic theory. In contrast with the derivation of Israel and Stewart, which considered the second moment of the Boltzmann equation to obtain equations of motion for the dissipative currents, we directly use the latter's definition. Although the equations of motion obtained via the two approaches are formally id...

متن کامل

From kinetic theory to dissipative fluid dynamics

We present the results of deriving the Israel-Stewart equations of relativistic dissipative fluid dynamics from kinetic theory via Grad’s 14-moment expansion. Working consistently to second order in the Knudsen number, these equations contain several new terms which are absent in previous treatments.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2022

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevd.106.l091901